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Hard-oblate spherocylinders with reduced core diameters I* = [/o = 1, 2, 3 are studied at several
packing fractions up to n = 0.45. Monte Carlo results are given for the first six spherical harmonic
coefficients of the pair distribution function, grem(r), and for the compressibility factors. These
results are compared with the hypernetted chain (HNC), Percus-Yevick (PY), and modified Verlet
(VM) approximations. The VM theory produces very good results for the gooo harmonic coefficient
at low and medium densities and for the reduced coefficients gi,,, = gkem/gooo at all densities
considered. The PY and HNC results are less accurate and none of the theories satisfactorily
describes the gooo harmonic coefficient at n = 0.45. The VM theory gives equation-of-state results in
excellent agreement with the simulation data, whereas the PY values of the compressibility factors
at medium and high densities are too low while the HNC values are too high. The thermodynamic
consistency between the pressure and the compressibility equations is also tested for each of the PY,
HNC, and VM theories. At all state points considered the consistency of the VM theory is much
better than that of the PY and HNC theories. Finally, we report results for the first bridge diagram
(the first term in the density expansion of the bridge function) at several specific orientations of the
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I. INTRODUCTION

The hard spherocylinder fluid is a popular model
in studying fluid structure and thermodynamics be-
cause hard-prolate-spherocylinders (HPS) and hard-
oblate-spherocylinders (HOS) capture some properties of
real fluids of rodlike and disk-shaped molecules, respec-
tively. HPS fluids have been often studied whereas com-
puter simulation and theoretical results for HOS fluids
are rather scarce. Several authors calculated virial co-
efficients [1,2]. Besides these low density results we are
aware of no studies of the HOS system except the work of
Wojcik and Gubbins [2] who reported Monte Carlo struc-
tural and equation-of-state data. The reason for this dis-
crimination against HOS systems is rather technical than
physical; it is easier to calculate particle-particle distance
of prolate than of oblate hard spherocylinders.

The HOS model is characterized by the reduce core
diameter [* = l/o where ! is the diameter of the disk
core and o is the thickness of the spherocylinder (for hard
spheres, | = 0). The second parameter characterizing the
model is the packing fraction 7, the fraction of volume
occupied by spherocylinders, given by n = pv, where p
is the particle number density and v = (60*2 + 3nl* +
4)mo3/24 is the oblate spherocylinder volume.

There are three aims of this paper. First, we provide
Monte Carlo (MC) computer simulation results for the
compressibility factors and for the spherical harmonic
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coefficients of the pair distribution function g(12). Sec-
ond, we compare the MC data with the results of the
Percus-Yevick (PY), hypernetted chain (HNC), and mod-
ified Verlet (VM) [3] theories. Third, we calculate, using
Monte Carlo integration, the first bridge diagram at sev-
eral specific orientations and distances of the root parti-
cles.

II. MONTE CARLO SIMULATIONS

We performed several Monte Carlo simulations using
standard Metropolis procedure with a cubic box and pe-
riodic boundary conditions. Technical details of the sim-
ulations, including evaluation of the compressibility fac-
tor, z = BP/p, were similar to those of Wojcik and Gub-
bins [2]. A number of molecules in the box was main-
tained in the range 500-540 in the dependence on I*.
We started from a regular lattice at the highest densi-
ties and from the nearest higher density at lower densi-
ties. After equilibration, approximately 3 x 106-5 x 106
trial configurations were generated. Statistical error of
results was estimated by a method of subaverages. We
collected values necessary for determining the compress-
ibility factors [1] and six harmonic coefficients of the pair
distribution function, g(12) in the center-center molec-
ular coordinate frame. We considered the coefficients
9000(7); 9300(T)s 9220(T), 9221(r), 9322(r), and gigo(r),
where g3,,..(7) = gkim(r)/gooo(r) are reduced harmonic
coefficients.

III. ORNSTEIN-ZERNIKE
EQUATION THEORIES

The Ornstein-Zernike (OZ) equation relates the direct
correlation function ¢(12) and the total correlation func-
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tion, h(12) = g(12) — 1,

h(12) = ¢(12) + p / h(13)c(32) d(3). (1)

It is convenient to write the discontinuous functions h
and c in terms of smooth functions, the series function 7,
and the bridge function B:

h(12) = exp[—Pu(12) + v(12) — B(12)] - 1, (2)

e(12) = h(12) - 7(12), (3)

where u(12) is the interparticle pair potential (for hard
bodies it is infinite when two particles overlap and zero
otherwise), and 8 = 1/(kgT).

The OZ equation may be closed by postulating a re-
lation between the series and the bridge functions. The
closures considered in this work are the PY closure

B(12) = v(12) — In[1 + v(12)], (4)
the HNC closure

B(12) =0, (5)
and the VM closure [3]

1 7(12)?
21+ (1.1 -2n/7)y(12)

B(12) = (6)

The numerical algorithm of solving the OZ equation is
similar to that used in our previous papers [3-5] and is
described in detail in a separate paper [6]. It consists of
expanding the correlation functions in spherical harmon-
ics in the center-center frame, discretizing them, trans-
forming to Fourier space, and solving the resulting set of
nonlinear equations by an approximate Newton-Raphson
method. We carried out the numerical calculations using
N = 512 grid points with the step size in configuration
space being Ar = 0.01. We used 14 spherical harmonics
Xkerm with k, £=0,2,4and m =0, ..., 4.

The compressibility factor, z, may be calculated from
the pressure equation, which for the hard bodies gives

2= 1+ Smp(rg(12)), (7)

where () denotes the angular average of r3g(12) when
two molecules are in contact. The alternative route to
the equation of state is via the compressibility equation

0o -1
B (%g)ﬁ = [1 +47rp/0 hgoo(?‘)’l"zd’l‘]

=1- 47rp/ cooo(r)r2dr . (8)
0

IV. THE FIRST BRIDGE DIAGRAM

In the low density limit the series and the bridge func-
tion become

v(12) = pD1(12), (9)

B(12) = %pzDg(IZ) (10)
where

Dy(12) = Cf\)
and

Dy(12) = — m

We calculated D;(12) and D;(12) using Monte Carlo in-
tegration. The first series diagram may be written as

Di(12) = P,(12)V(12), (11)

where Pj;(12) is a probability that the field particle 3,
randomly placed into the space element of volume V (12)
is overlapping with the fixed root particles 1 and 2. For
each considered distance and orientation of the root par-
ticles we used 10° trial configurations of particle 3 to cal-
culate P;(12). Configurations at which particles formed
a chain (i.e., particle 3 overlapped with 1 and 2) were
stored and used to calculate D,(12).
The first bridge diagram may be written as

D,(12) = D}(12)Py(12) , (12)

where P2(12) is a probability that field particles of two ac-
cidentally chosen three-member chains overlap. To eval-
uate P>(12) first 1024 chains

TaN

obtained and stored as mentioned above were used; each
pair of the chains was tested on overlapping of the field
particles. The series and bridge diagrams were calcu-
lated for four specific orientations of root spherocylin-
ders, plane, T-shape, cross, and parallel (see Fig. 3), at
several distances ranging from contact distance r. to the
distance r = r. + | + o at which D>(12) vanishes.

V. RESULTS AND DISCUSSION

Monte Carlo simulations were carried out for three re-
duced core diameters {* = 1, 2, 3 at three packing frac-
tions = 0.25, 0.35, 0.45. We solved the OZ equation for
the same values of [* at eight packing fractions ranging
from 0.05 to 0.45.

The OZ equation theories provide uniformly excellent
results in the low density region. At high densities the
VM theory values of gi¢m (r) are within the precision of
the simulations for the reduced core diameter I* = 1.
This is not surprising. The VM theory gives accurate re-
sults for hard spheres (I* = 0) in the entire fluid density
range [3] and, thus, it must be excellent at low core di-
ameters and all fluid densities. At this core diameter and
high densities the PY theory slightly overestimates and
the HNC theory slightly underestimates the extremes of
gooo(r) harmonic coefficient but, generally, their struc-
ture results are also very good.

In Figs. 1 and 2 we show the structure results of the
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Zooo(T)

FIG. 1. gooo, the harmonic coefficient of the pair distri-
bution function at [* = 3 and at n = 0.35 and 0.45. o, Monte
Carlo data; — — — PY theory; — — — HNC theory;
VM theory.

PY, HNC, and VM theories for the largest core diameter
at the highest densities. Figure 1 compares the theo-
retical results for gooo(r) with our computer simulation
results at [* = 3 and = 0.35 and 0.45. At the lower
density the HNC results are the best and the PY results
the worst. The VM theory underestimates the simula-
tion results in the contact region and gives good results
at larger interparticle distances. At the highest density
considered, n = 0.45, the PY and VM results are poor.

-1.5

5 1
r/o
FIG. 2. g2¢m reduced spherical harmonic coefficients of

the pair distribution function at [* = 3 and = 0.45. The
key is the same as Fig. 1.
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Numerical solution to the HNC equation could not be
obtained.

Figure 2 shows the reduced spherical harmonic coeffi-
cients 9399, 9320> 9321, and g3,, for I* = 3 and 7 = 0.45.
The VM theory gives excellent results; the PY harmonic
coefficients are in a reasonable agreement with the sim-
ulation data. This indicates that the main discrepancies
of the theories considered are in the leading harmonic
coefficient gooo(r).

Table I compares the PY, HNC, and VM compressibil-
ity factors calculated from the pressure equation (7) with
Wojcik and Gubbins [2] and present MC results and with
the results of a semiempirical equation of state recently
proposed by Maeso, Solana, and Amoros [7]. The two
simulation data sets mutually agree within estimated er-
rors (see columns 2 and 3). The results of the equation
of state (column 3) agree with the MC data within the
precision of the simulations at all but one state point
(I* = 3,7 = 0.45). The VM compressibility factors are
very good. The PY and HNC results are consistently too
low and too high, respectively.

We have tested the thermodynamic consistency of the
theories by comparing the compressibility factors from
the pressure equation (7) and the compressibility equa-
tion (8). The latter were calculated by the same method
as in Ref. [5]. The results are shown in Table II. It
is seen that the consistency of the VM theory is much
better than that of the PY and the HNC theories.

The first bridge diagrams D,(12) for several orienta-
tions and all elongations are displayed in Fig. 3 together
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FIG. 3. Dj(12)/v*® first bridge diagram reduced by
the spherocylinder volume v for several orientations of
the molecules 1 and 2. hard spheres, - - - I* = 1;
-—=l'=2;—— —1"=3.
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FIG.4. P,(12) = D,(12)/D?(12) at I* = 1 and 3. O cross
orientation, A parallel orientation.

with hard sphere results. Overall r dependencies are sim-
ilar to that of the hard sphere system. The contact val-
ues increase with increasing elongation and they strongly
depend on 6, and 6,. The ¢ dependence is less pro-
nounced (compare the results for plane and cross orien-
tations). Figure 4 shows the first bridge diagram divided

by the first parallel diagram P,(12) = D,(12)/D?(12)
for the cross and parallel orientations at I* = 1 and 3.
The results for the other orientations considered are sim-
ilar; P(12) is much less orientationally dependent than
D;(12). In the PY and VM approximation P,(12) = 1
and in the HNC approximation P;(12) = 0. Thus, none
of the closures considered is accurate in the low density
region.

VI. CONCLUSIONS

We have performed Monte Carlo simulations of the
structure and equation-of-state quantities of the HOS
fluid using more particles and more configurations and
for a larger spherocylinder core diameter than in a pre-
vious study [2].

We have compared the simulation data with the re-
sults of the PY, HNC, and VM integral equation theo-
ries. At low core diameters the VM spherical harmonic
coefficients are in excellent agreement with the simula-
tion results up to the highest packing fraction consid-
ered, n = 0.45. The PY and HNC results are slightly
worse but still good. At the largest core diameter con-

TABLE I. The compressibility factors of the HOS. MC®—simulation results of Ref. [2],
MC®—present simulation results, and EOS—equation of state of Ref. [7]. The PY, HNC, and
VM values were obtained using the pressure equation (7).

n McCe Mct EOS PY HNC VM
*=1
0.05 1.25 1.25 1.25 1.25
0.10 1.58+0.01 1.58 1.58 1.58 1.58
0.15 2.02 2.00 2.06 2.01
0.20 2.59 2.54 2.70 2.57
0.25 3.354+0.07 3.35+0.01 3.36 3.25 3.60 3.33
0.30 4.40 4.18 4.87 4.35
0.35 5.79+0.07 5.81+0.02 5.81 5.41 6.68 5.75
0.40 7.79 7.04 9.32 7.69
0.45 10.53+0.07 10.53+0.03 10.60 9.25 13.23 10.43
*=2
0.05 1.29 1.29 1.30 1.29
0.10 1.69 1.68 1.70 1.68
0.15 2.21 2.18 2.27 2.20
0.20 2.91 2.85 3.05 2.89
0.25 3.83+0.05 3.85+0.01 3.84 3.71 4.14 3.81
0.30 5.09 4.84 5.65 5.06
0.35 6.791+0.05 6.81+0.02 6.79 6.33 7.76 6.74
0.40 9.11 8.32 9.06
0.45 12.3040.10 12.39+0.04 12.37 11.02 12.26
*=3
0.05 1.34 1.34 1.34 1.34
0.10 1.80 1.80 1.83 1.80
0.15 2.43 2.40 2.51 2.42
0.20 3.27 3.20 3.45 3.25
0.25 4.39+0.01 4.38 4.24 4.74 4.37
0.30 5.77 5.61 6.50 5.86
0.35 7.80+0.02 7.82 7.42 8.93 7.86
0.40 10.45 9.84 10.54
0.45 14.30+0.07 14.07 13.10 14.15
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The thermodynamic consistency of the PY, HNC, and VM approximations. Com-

pressibility factors z. calculated from the compressibility Eq. (8), Az = z, — z..

PY HNC VM
n 2 Az 2 Az Ze Az

=
0.05 1.25 0.00 1.25 0.00 1.25 0.00
0.10 1.58 0.00 1.57 0.02 1.58 0.00
0.15 2.02 -0.02 1.98 0.08 2.02 -0.01
0.20 2.61 -0.07 2.50 0.20 2.60 -0.03
0.25 3.41 -0.16 3.16 0.44 3.37 -0.04
0.30 4.51 -0.33 4.00 0.87 4.41 -0.06
0.35 6.05 -0.64 5.08 1.60 5.82 -0.07
0.40 8.25 -1.21 6.49 2.83 7.77 -0.08
0.45 11.48 -2.23 8.37 4.86 10.50 -0.07

*=2
0.05 1.29 0.00 1.29 0.01 1.29 0.00
0.10 1.69 -0.01 1.69 0.01 1.69 -0.01
0.15 2.22 -0.04 2.22 0.05 2.22 -0.02
0.20 2.95 -0.10 2.93 0.12 2.93 -0.04
0.25 3.96 -0.25 3.85 0.29 3.89 -0.08
0.30 5.37 -0.53 4.99 0.66 5.18 -0.12
0.35 7.36 -1.03 6.28 1.48 6.93 -0.19
0.40 10.24 -1.92 9.33 -0.27
0.45 14.49 -3.47 12.64 -0.38

*=
0.05 1.34 0.00 1.34 0.00 1.34 0.00
0.10 1.81 -0.01 1.81 0.02 1.81 -0.01
0.15 2.46 -0.06 2.46 0.05 2.45 -0.03
0.20 3.37 -0.17 3.33 0.12 3.33 -0.08
0.25 4.64 -0.40 4.46 0.28 4.50 -0.13
0.30 6.44 -0.83 5.85 0.65 6.09 -0.23
0.35 9.01 -1.59 7.35 1.58 8.23 -0.37
0.40 12.77 -2.93 11.10 -0.56
0.45 18.36 -5.26 14.99 -0.84

sidered (I* = 3) and the largest packing fraction none
of the theories describes gogo(r) harmonic coefficient sat-
isfactorily. The VM and PY reduced higher harmonic
coefficients of the pair distribution function are in good
agreement with the simulations even in this state point.

The equation-of-state results of the VM theory are
very good, while the accuracy of the PY and HNC com-
pressibility factors is poor at high densities. The same
holds true for the thermodynamic consistency between
the pressure and the compressibility equation.

We have also calculated a bridge diagram using Monte

Carlo integration. It was shown that D,(12) strongly
depends on the nonsphericity of molecules and on 6, 0,
and that it depends much less on ¢. It was also shown
that none of the theories tested gives accurate results for
the bridge function at low densities.
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